New spongelike structure converts solar energy into steam

A new material structure developed at MIT generates steam by soaking up the sun. The structure — a layer of graphite flakes and an underlying carbon foam — is a porous, insulating material structure that floats on water. When sunlight hits the structure’s surface, it creates a hotspot in the graphite, drawing water up through the material’s pores, where it evaporates as steam. The brighter the light, the more steam is generated. The new material is able to convert 85 percent of incoming solar energy into steam — a significant improvement over recent approaches to solar-powered steam generation. What’s more, the setup loses very little heat in the process, and can produce steam at relatively low solar intensity. This would mean that, if scaled up, the setup would likely not require complex, costly systems to highly concentrate sunlight. Hadi Ghasemi, a postdoc in MIT’s Department of Mechanical Engineering, says the spongelike structure can be made from relatively inexpensive materials — a particular advantage for a variety of compact, steam-powered applications. “Steam is important for desalination, hygiene systems, and sterilization,” says Ghasemi, who led the development of the structure. “Especially in remote areas where the sun is the only source of energy, if you can generate steam with solar energy, it would be very useful.”

How Much Energy Storage Do You Need to Back Up the London Array?

Storing electricity underwater in the form of compressed air is a tantalizing notion that could, if it works, help solve the intermittency problem of wind, solar, and other renewable sources. That “if” is a big one, though, because there are many details engineers have yet to nail down for underwater compressed-air energy storage (UW-CAES). One company that’s been trying to nail down those details is the Canadian start-up Hydrostor. I recently wrote about its plans to deploy the world’s first commercial UW-CAES system in Lake Ontario. The Hydrostor system will use electricity from the Toronto Hydro power grid to run a compressor; the compressed air will then be stored in flexible energy bags submerged at a depth of about 80 meters. Later, the air will be run through a turbine when the energy is needed. For all that effort, the system will be able to supply just a megawatt of electricity for up to three hours. Eventually, the company is aiming for a capacity of 20 to 30 megawatts that can be discharged over 10 to 20 hours. But a big wind or solar farm would require a lot more storage than that.. cont'd.

OutBack Power Debuts Next Generation Grid/Hybrid Solar to the Builder Community

OutBack Power Technologies, Inc., a designer and manufacturer of advanced power electronics for renewable energy, backup power and mobile applications, will showcase its newest Radian Grid/Hybrid solar systems at PCBC, June 25 to 26 in San Francisco. Supported by smarter technology, including the new GridZero Radian inverters, energy storage options, and OPTICS RE mobile monitoring and control application, these next-generation solar systems deliver both renewable economics and energy independence to homeowners, installers and builders. The result is increased customer satisfaction through reduced anxiety concerning solar investment in the midst of changing utility policies, and remote system control for installers reducing the need for costly service calls.  Until now, solar users fell into two categories: off-grid, but with limited electrical use; and grid-tied with the ability to save money when the sun is shining, but with no option for power during outages or emergencies. OutBack Power's Grid/Hybrid systems with energy storage offer the best of both worlds: Homeowners can choose to go off-grid and store unused energy for future use, or use the grid as their backup when they need extra electricity beyond what their system can produce. 

New Report Finds Thermal Energy Storage Could Add Value To Solar Energy

A new report from NREL, the National Renewable Energy Laboratory, could help spur the development of more utility scale concentrating solar power plants with thermal energy storage features while boosting the market for solar cells, too. The report indicates that CSP/energy storage projects could add value to utility scale solar energy in California, and they would enable more solar cell development by creating additional grid flexibility. California’s ambitious renewable energy goal for 2020 also plays a key role, so keep in mind that the NREL added-value findings for thermal energy storage are transferable to only to other states with similar aspirations.  

WINNERS OF THE INTERSOLAR AWARD 2014 AND THE ELECTRICAL ENERGY STORAGE (EES) AWARD 2014

Intersolar Europe, the world's largest exhibition for the solar industry and its partners, pays tribute to the solar industry's innovative strength for the seventh time. The ten most innovative companies were honored during an official ceremony that took place today at Intersolar Europe's Innovation Exchange. The Intersolar AWARD was presented to groundbreaking solutions in the categories of Photovoltaics (PV) and Solar Projects in Europe. For the first time, the electrical energy storage (ees) AWARD recognizes innovations in battery and energy storage technology.  This year, around 3,500 companies from all international Intersolar exhibitions and the electrical energy storage (ees) exhibition were invited to impress the jury with their innovations. Applicants could only put forward products, projects, services and solutions which were undergoing testing, which were already in use or which showed significant developments to existing technologies at the time of submission. All solar projects had to have been completed within the last two years. The assessment criteria reflected the challenges posed by the market. Experts examined the degree of technological innovation, the benefit for industry, the environment and society, the economic viability of the solution and proof of its innovative quality.  Full Release:

EnerVault unveils 'flow battery' for solar energy storage

In an almond orchard outside Turlock in the Central Valley, two large tanks hold water, minerals - and more importantly, energy. The tanks in Stanislaus County are part of a "flow battery" that stores energy from nearby solar panels. It's the largest battery of its kind in the world. And it could play a role in California's push to develop bigger and better ways to store large quantities of energy. This particular flow battery, unveiled to the public Thursday during a ceremony with state and federal officials, was built by EnerVault of Sunnyvale, part of the Bay Area's fast growing energy-storage industry. Like most of its competitors, EnerVault is young, founded in 2008, with about $30 million in venture funding to date. Some companies try to perfect the lithium-ion batteries found in laptops and electric cars. Others, including EnerVault and Primus Power of Hayward, specialize in flow batteries, which store energy in tanks of electrolytes. The fluid is then pumped through the battery's cells when power is needed. In contrast, the batteries found at a grocery store contain the electrolyte, cathode and anode all in one package. "Flow batteries are batteries turned inside out," said Jim Pape, EnerVault's chief executive officer. His company's flow batteries use iron and chromium, blended into the water inside its tanks. Both materials are safe to handle. (For those of you thinking "Erin Brockovich," EnerVault uses the kind of chromium found in multivitamins, not the infamous hexavalent chromium featured in the movie). Iron and chromium also have the benefit of being cheap.

Records 406 to 411 of 411

First | Previous

Energy Storage - Featured Product

HPS EnduraCoilTM Cast Resin Medium Voltage Transformer

HPS EnduraCoilTM Cast Resin Medium Voltage Transformer

HPS EnduraCoil is a high-performance cast resin transformer designed for many demanding and diverse applications while minimizing both installation and maintenance costs. Coils are formed with mineral-filled epoxy, reinforced with fiberglass and cast to provide complete void-free resin impregnation throughout the entire insulation system. HPS EnduraCoil complies with the new NRCan 2019 and DOE 2016 efficiency regulations and is approved by both UL and CSA standards. It is also seismic qualified per IBC 2012/ASCE 7-10/CBC 2013. Cast resin transformers are self-extinguishing in the unlikely event of fire, environmentally friendly and offer greater resistance to short circuits. HPS also offers wide range of accessories for transformer protection and monitoring requirements.